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Abstract— Optimal control problems are often solved ex-
ploiting the solution of the so-called Hamilton-Jacobi-Bellman
(HJB) partial differential equation, which may be, however,
hard or impossible to solve in specific examples. Herein we
circumvent this issue determining a dynamic solution of the
HJB equation, without solving any partial differential equation.
The methodology yields a dynamic control law that minimizes
a cost functional defined as the sum of the original cost and an
additional cost.

I. INTRODUCTION

Optimal control deals with the problem of finding a

control law such that the origin is an asymptotically stable

equilibrium point of the closed-loop system and moreover a

given criterion is optimized. An optimal control policy may

be given by a set of differential equations describing the

paths of the control variable that minimize the cost functional

which is in general a function of the state and of the control

input.

Consider a nonlinear system, affine in the control, de-

scribed by an equation of the form

ẋ = f(x) + g(x)u , (1)

with f : Rn → R
n and g : Rn → R

n×m smooth mappings,

where x(t) ∈ R
n denotes the state of the system and

u(t) ∈ R
m the input. The task of the control is to minimize

the cost functional

J(x(t), u(t)) = qtf (x(tf )) +

∫ tf

0

L(x(t), u(t))dt , (2)

where L(·, ·) is positive semidefinite, subject to the nonlinear

first-order dynamic constraint (1) and the initial condition

x(t0) = x0. Herein we consider the infinite horizon problem,

i.e. tf → ∞, and the cost functional

J(x(t), u(t)) =
1

2

∫

∞

0

(q(x) + uTu)dt , (3)

where q : Rn → R+ is positive semi-definite, subject to the

dynamical constraint (1), the initial condition x(t0) = x0
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and we replace the terminal condition on x(tf ) with the

requirement that the zero equilibrium of the closed-loop

system be locally asymptotically stable.

A possible control law design methodology hinges upon

the solvability of a partial differential equation, i.e. the

Hamilton-Jacobi-Bellman (HJB) equation1

min
u

{

Vx(f(x) + g(x)u) +
1

2
q(x) +

1

2
uTu

}

= 0 . (4)

The major drawback of this approach is that an explicit

solution of the HJB equation may be impossible to compute

in practical applications.

To cope with this issue the problem of finding an ap-

proximate solution of (4) has been extensively addressed

in recent years [2], [3], [4], [6], [7], [8], [9], [11], [12].

Sufficient conditions that guarantee the convergence of the

Galerkin approximation of the HJB equation over a compact

set containing the origin are given in [3]. In [6] conditions

for the existence of a local solution of the HJB equation, for

a parameterized family of infinite horizon optimal control

problems are given. In [7] under the assumption of stabi-

lizability of the nonlinear system, which is supposed to be

real analytic about the origin, an optimal stabilizing control

defined as the sum of a linear control law, that solves the

corresponding linearized problem, and a convergent power

series about the origin beginning with terms of second order

is proposed. In [8] it is shown that the solution of the HJB

equation is the eigenfunction, relative to the zero eigenvalue,

of the semigroup, which is max-plus linear, corresponding to

the HJB equation and a discrete-time approximation of the

semigroup guarantees the convergence of the approximate

solution to the actual one.

A successive approximation approach to design an optimal

controller for a class of nonlinear systems with a quadratic

performance index is presented in [11]. The methodology al-

lows to transform the nonlinear optimal control problem into

a sequence of non-homogeneous linear two-point boundary

value problems. The optimal control law consists of a linear

feedback term and a nonlinear compensation term which is

the limit of an adjoint vector sequence. The local solution

proposed in [12] hinges upon the technique of apparent

linearization and the repeated computation of the steady-

state solution of a Riccati equation. Since the assumption

of differentiability of the solution of the HJB equation is

restrictive, in recent years a large effort has been devoted to

1In what follows we use the notation Vx to denote the gradient of the
function V with respect to the vector x.
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avoid this hypothesis, interpreting the HJB equation in the

viscosity sense [2], [4], [9].

The main contribution of this paper is a method to

construct dynamically an exact solution of a (modified) HJB

equation, i.e. considering the immersion of the system (1)

into an augmented system, without actually solving any

partial differential equation, see also [10].

The rest of the article is organized as follows. In the next

section the definition of the problem studied in the paper is

given. In Section III we present a dynamic optimal control

law which guarantees asymptotic stability of the origin of

the closed-loop system and minimizes a meaningful cost,

which upperbounds the original cost (3). Furthermore, in the

same section it is shown that the result can be improved

yielding a dynamic control law that minimizes the extra-

cost. In Section IV we show that the proposed approach,

when applied to linear time-invariant systems, provides the

standard optimal state feedback. Finally in the last two

sections a case study is presented and conclusions are drawn,

respectively.

II. HAMILTON-JACOBI-BELLMAN EQUATION

Consider system (1) and the following assumption.

Assumption 1: f ∈ C1 is such that f(0) = 0, i.e. x = 0 is

an equilibrium point for the system (1) when u(t) = 0 for all

t ≥ 0. Hence f(x) = F (x)x, for some, possibly not unique,

continuous mapping F (x) : R
n → R

n×n. Additionally

suppose that the nonlinear system (1) is stabilizable, i.e. there

exists a smooth positive definite function V (x) such that

infu[Vxf(x)+Vxg(x)u] < 0 for all x 6= 0 together with the

assumption of small control property, and that the nonlinear

system (1) with output q(x) is zero-state detectable.

Problem 1: Consider system (1), under Assumption 1,

and the cost functional (3). The regional dynamic optimal

control problem consists in determining an integer2 ñ ≥ 0,

a dynamic control law of the form

ξ̇ = α(x, ξ) ,

u = β(x, ξ) ,
(5)

with ξ(t) ∈ R
ñ, α : Rn × R

ñ → R
ñ, β : Rn × R

ñ → R
m

and a set Ω̄ ⊂ R
n × R

ñ containing the origin of R
n × R

ñ

such that the closed-loop system

ẋ = f(x) + g(x)β(x, ξ) ,

ξ̇ = α(x, ξ) ,
(6)

has the following properties.

(i) The zero equilibrium of the system (6) is asymptotically

stable with region of attraction containing Ω̄.

(ii) For any ū(t) and any (x0, ξ0) such that the trajectory

of the system (6) remain in Ω̄

J((x0, ξ0), β) ≤ J((x0, ξ0), ū) .

⋄

2If ñ = 0 the term dynamic is abused.

The solution of the HJB equation (4), if it exists, is the value

function of the optimal control problem, i.e. it is a function

that associates to every point x0 in the state space the optimal

cost of the trajectory of system (1) with x(0) = x0, i.e.

V (x0) = min
u

1

2

∫

∞

0

(q(x) + uTu)dt . (7)

Knowledge of the value function on the entire state space

allows to determine the minimizing input for all initial condi-

tions. Note that if the optimal control problem is meaningful

then necessarily the cost imposed to the state of the system

and the control law must be positive, hence V (x) must be

positive definite. It is easy to check that the minimum of

equation (4) with respect to u is attained for

uo = −g(x)TV T
x . (8)

Thus, if we are able to solve analytically the partial differ-

ential equation

Vxf(x)−
1

2
Vxg(x)g(x)

T V T
x +

1

2
q(x) = 0 , (9)

we can design the optimal control policy given by (8), which

is a solution of the dynamic optimal control problem with

ñ = 0. Thus, rather than just searching for the control

minimizing (3) and for the value of V (x(t)) for various x0,

the problem is approached by considering the evaluation of

V (x(t)) for all x(t) and the associated optimal policy.

Finally recall that in the linear case the solution of the

optimal control problem is a linear static state feedback of

the form u = −BT P̄ x, where P̄ is the symmetric positive

definite solution of the algebraic Riccati equation

P̄A+AT P̄ − P̄BBT P̄ +Q = 0 , (10)

with

A ,
∂f

∂x

∣

∣

∣

x=0
Q ,

∂2q

∂x2

∣

∣

∣

x=0
B , g(x)

∣

∣

∣

x=0
.

III. DYNAMIC OPTIMAL CONTROL LAW

Before stating the main result a preliminary lemma is

presented.

Lemma 1: [1] Let M be an n× n symmetric matrix and

C an m× n matrix of rank m, where m < n. Let Z denote

a basis for the null space of C.

(i) If ZTMZ is positive semidefinite and singular, then

there exists a finite k̄ ≥ 0 such that M + kCTC

is positive semidefinite for all k ≥ k̄, if and only if

Ker(ZTMZ) = Ker(MZ). In this case, M + kCTC

is singular for all k.

(ii) ZTMZ is positive definite if and only if there exists a

finite k̄ ≥ 0 such that M + kCTC is positive definite

for all k ≥ k̄.

⋄

Consider now equation (9) and suppose that it can be solved

algebraically, as detailed in the following definition.
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Definition 1: Consider system (1), under Assumption 1.

A C1 mapping P (x) : R
n → R

1×n, zero at zero, is

said to be an algebraic P̄ solution of (9) if there exists

σ(x) , xT Σ(x) x > 0, for all x ∈ R
n \ {0}, with

Σ(x) : Rn → R
n×n, Σ(0) = 0, such that

P (x)f(x) +
1

2
q(x)−

1

2
P (x)g(x)g(x)TP (x)T + σ(x) = 0 ,

(11)

and P (x) is tangent in x = 0 to the symmetric positive

definite solution of (10), i.e.

∂P (x)T

∂x

∣

∣

∣

x=0
= P̄ .

⋄

Remark 1: Let P (x) = [P1(x), ..., Pn(x)], with Pi(x) :
R

n → R for i = 1, ..., n, be an algebraic P̄ solution of (9).

Then there exists V : Rn → R such that

∂V

∂x
(x) = P (x) ,

if and only if
∂Pi

∂xj

(x) =
∂Pj

∂xi

(x) , (12)

for all x and i, j = 1, 2, ..., n. Obviously, since an arbitrary

algebraic solution of the HJB inequality is selected, the

mapping P (x) may not satisfy condition (12).

Using the algebraic P̄ solution P (x), define the function

V (x, ξ) = P (ξ)x+
1

2
‖x− ξ‖2R , (13)

with ξ(t) ∈ R
n and R = RT ∈ R

n×n positive definite.

Note that ‖v‖2R denotes the Euclidean norm of the vector v

weighed by the matrix R, i.e. ‖v‖2R = vTRv. To provide a

concise statement of the main result yielding a solution to

the regional dynamic optimal control problem, define

∆(x, ξ) = (R − Φ(x, ξ))Λ(ξ)T , (14)

with Λ(ξ) = Ψ(ξ)R−1, where Φ(x, ξ) ∈ R
n×n is a

continuous mapping such that

P (x)− P (ξ) = (x− ξ)TΦ(x, ξ)T , (15)

Ψ(ξ) ∈ R
n×n is the Jacobian matrix of the mapping P (ξ),

Acl(x) = F (x)− g(x)g(x)TN(x) , (16)

with N(x) such that P (x) = xTN(x)T . Note that the vector

field Acl(x)x describes the closed-loop system when the

algebraic feedback u = −g(x)TP (x)T is applied.

Theorem 1: Consider system (1), under Assumption 1 and

the cost defined in (3). Let P (x) be an algebraic P̄ solution

of (9). Let the matrix R > 0 be such that V (x, ξ) is positive

definite in a set Ω ⊆ R
2n containing the origin and such that

1

2
Acl(x)

T∆+
1

2
∆TAcl(x) < Σ(x) +

1

2
∆T g(x)g(x)T∆ ,

(17)

for all (x, ξ) ∈ Ω \ {0}.

Then there exists k̄ such that for all k ≥ k̄ the function

V (x, ξ) > 0, defined as in (13), satisfies for all (x, ξ) ∈ Ω
the Hamilton-Jacobi-Bellman inequality

HJB(x, ξ) , Vx(x, ξ)f(x) + Vξ(x, ξ)ξ̇

+
1

2
q(x)−

1

2
Vx(x, ξ)g(x)g(x)

T Vx(x, ξ)
T ≤ 0 ,

(18)

with

ξ̇ = −kVξ(x, ξ)
T = −k(Ψ(ξ)Tx−R(x− ξ)) . (19)

Hence

ξ̇ = −k(Ψ(ξ)Tx−R(x− ξ)) ,

u = −g(x)T
[

P (x)T + (R − Φ(x, ξ))(x − ξ)
]

,
(20)

solves the regional dynamic optimal control problem with

instantaneous cost L(x, ξ, u) = q(x) + h(x, ξ) + uTu where

h(x, ξ) ≥ 0 is such that

HJB(x, ξ) +
1

2
h(x, ξ) = 0 .

⋄

Remark 2: Consider V as in (13) and note that there exist

a compact set Ω ⊆ R
2n containing the origin and a positive

definite matrix R̄ such that for all R ≥ R̄ the function V

is positive definite for all (x, ξ) ∈ Ω ⊆ R
2n. In fact since

P (x) is tangent in x = 0 to the solution of the algebraic

Riccati equation then the function P (x)x is, locally around

the origin, quadratic and moreover has a local minimum for

x = 03. Hence, the existence of R̄ can be proved noting that

the function P (ξ)x is (locally) quadratic and, restricted to

the manifold M = {ξ ∈ R
n : ξ = x}, is positive definite for

all x 6= 0 in Ω.

Remark 3: The zero-state detectability property, assumed

for the nonlinear system ẋ = f(x) + g(x)u with out-

put q(x), holds also for the extended system (6), with

α(x, ξ) and u(x, ξ) defined in (20), with respect to the

same output. To prove the claim, consider system (6) and

note that u(x(t), ξ(t)) = 0, q(x(t)) = 0 for all t ≥ 0
imply, by Assumption 1, that x asymptotically converges

to the origin while ξ belongs, by (18), to the compact set

{(x, ξ) : V (x, ξ) ≤ V (x(0), ξ(0))} for all t ≥ 0. Therefore,

system (6) reduces, for t sufficiently large, to the system

ξ̇ = −kRξ, which has an asymptotically stable equilibrium

at the origin. Concluding, u(x(t), ξ(t)) = 0 and q(x(t)) = 0
for all t ≥ 0 imply that (x, ξ) asymptotically converges to

the origin, hence the claim.

Remark 4: By the condition (18), V is a non-strict Lya-

punov function for the closed-loop system (6). In fact,

V (x, ξ) > 0 for all (x, ξ) ∈ Ω \ {0} and V̇ ≤ 0, hence by

LaSalle’s invariance principle and zero-state detectability, the

feedback (20) asymptotically stabilizes the zero equilibrium

of the closed-loop system.

3This can be easily proved considering that the first-order derivative of
the function is zero in x = 0 and (P (x)x)x = 2P̄ > 0.
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Remark 5: An algebraic P̄ solution can be easily de-

termined since the equation (11) does not involve partial

derivatives of the unknown function to be determined, i.e.

the difficulty of solving partial differential equations has been

removed. The control law defined in Theorem 1 is optimal

for the system (1) with respect to a cost functional given

by the sum of the original cost q(x) + uTu and the positive

definite function h(x, ξ).

Remark 6: The problem solved herein is intrinsecally

different from the so-called inverse optimal control problem

[5], where it is shown that optimality with respect to any

meaningful cost functional guarantees several robustness

properties of the closed-loop system. In fact, herein op-

timality of the control law is ensured with respect to a

cost functional which upperbounds the original one, i.e. the

optimal trajectories of the control and the state variables are

determined with respect to the original cost and an extra-cost,

which is necessarily paid to relax the gradient condition (12).

In addition the control law can be modified in order to min-

imize the extra-cost imposed on the state. The minimization

can be achieved shaping the cost function to approximate

the original cost and selecting the initial condition of the

dynamic extension, as detailed in the following result.

To state the result define C(ξ) = [Ψ(ξ)T −R] ∈ R
n×2n,

and note that C(ξ) has constant rank n, since R is positive

definite, and

M(x, ξ) =

[

Σ(x) Γ1(x, ξ)

Γ1(x, ξ)
T Γ2(x, ξ)

]

,

where Γ1(x, ξ) = − 1
2Acl(x)

T (R− Φ(x, ξ)) and Γ2(x, ξ) =
1
2 (R−Φ(x, ξ))T g(x)g(x)T (R−Φ(x, ξ)). Note that the null

space of C(ξ) can be written as the space spanned by the

columns of the matrix Z(ξ), where

Z(ξ) = Ker(C(ξ)) =

[

I

R−1Ψ(ξ)T

]

. (21)

Finally, consider the change of coordinates

[xT (x − ξ)T ]T = T (x, ξ)y, with y = [yT1 yT2 ]
T ∈ R

2n

and

T (x, ξ) =

[

ZT

C

] [

In −(ZTMZ)−1ZTMCT

0n In

]

.

Note that the matrix T (x, ξ) ∈ R
2n×2n is well-defined and

non-singular by construction if the condition (17) is satisfied.

Theorem 2: Consider system (1), under Assumption 1 and

the cost defined in (3). Let P (x) be an algebraic P̄ solution

of (9). Let the matrix R > 0 be such that V (x, ξ) is positive

definite in a set Ω ⊆ R
2n containing the origin and such that

the condition

0 < Σ(x) +
1

2
∆T g(x)g(x)T∆

−
1

2

(

Acl(x)
T∆+∆TAcl(x)

)

≤ εI

is satisfied for all (x, ξ) ∈ Ω \ {0} and for some ε ∈ R+.

Let K(·) : Rn × R
n → R

n×n be defined as

K(x, ξ) = (CCT )−1Π(x, ξ)(CCT )−1 , (22)

where Π = CMZ
(

ZTMZ
)

−1
ZTMCT − CMCT and

suppose that K(x, ξ) is continuous in (x, ξ) = (0, 0). Then

the control

ξ̇ = −K(x, ξ)(Ψ(ξ)Tx−R(x− ξ)) ,

u = g(x)T
[

P (x)T + (R− Φ(x, ξ))(x − ξ)
]

,
(23)

solves the regional dynamic optimal control problem with

instantaneous cost L(x, ξ, u) = q(x) + h̄(x, ξ) + uTu where

0 ≤ h̄(x, ξ) ≤ εyT1 y1, for all (x, ξ) ∈ Ω.

⋄

Note that, by definition of value function, V (x(0), ξ(0)) is

the optimal value of the cost minimized by the dynamic

control law defined in (23) for the system (1) initialized in

(x(0), ξ(0)). Therefore to minimize the optimal cost, for a

given initial condition x̄(0) of system (1), it is possible to

select the initial condition of the dynamic extension ξ(0) as

ξx̄(0)(0) = argmin
ξ

V (x̄(0), ξ) .

IV. LINEAR SYSTEMS

Consider a linear time-invariant system described by equa-

tions of the form

ẋ = Ax+Bu , (24)

where A ∈ R
n×n, B ∈ R

n×m and the quadratic cost

J(x(t), u(t)) =
1

2

∫

∞

0

(xTQx+ uTu)dt .

The following statement gives the counterpart of the results

presented in Theorem 1 to linear systems. It is interesting

to note that the methodology proposed in Theorem 1 yields

the standard solution of the linear quadratic infinite horizon

optimal control problem.

Proposition 1: Consider system (24). Suppose that there

exists a positive definite matrix P̄ ∈ R
n×n such that4

P̄A+AT P̄ − P̄BBT P̄ +Q = 0 . (25)

Then there exists R such that the conditions in Theorem 1 are

trivially satisfied for all (x, ξ) ∈ R
2n. Moreover the control

law (20) reduces to

ξ̇ = −kP̄ ξ ,

u = −BT P̄x .

(26)

⋄

Note that with ξ(0) = 0 the static state feedback optimal

control law is recovered.

4Since Σ(0) = 0, the equation can be considered as the linear condition
equivalent to the condition (11) in Theorem 1.
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Remark 7: The result obtained in the linear setting sug-

gests a possible choice for the matrix R in the nonlinear

case. In fact, selecting R = Φ(0, 0) > 0, with Φ defined as

in (15), yields ∆(0, 0) = 0, hence, since ∆ is continuous, it is

sufficiently small in a neighborhood of the origin. Moreover,

assume additionally that Σ(0) = Σ̄ > 0 in the definition

of algebraic P̄ solution. Then, by continuity of the left-

hand side of inequality (17), there exists a non-empty subset

Ω̂ ⊂ R
2n containing the origin such that the condition (17)

is satisfied for all (x, ξ) ∈ Ω̂.

V. EXAMPLE: THE VAN DER POL OSCILLATOR

The single-input, single-output, nonlinear system

ẋ1 = x2 ,

ẋ2 = −x1 − µ(1 − x2
1)x2 + x1u ,

(27)

known as the Van der Pol oscillator, with x(t) =
(x1(t) , x2(t))

T ∈ R
2 and u(t) ∈ R, is a non-conservative

oscillator with nonlinear damping. The parameter µ describes

the strength of the damping effect and in the following is

selected as µ = 0.5, hence the oscillator has a stable but

linearly uncontrollable equilibrium at the origin and an un-

stable limit cycle. Define the positive definite cost q(x) = x2
2,

i.e. the control action minimizes the speed of the oscillator

together with the control effort. Note that the solution of

the HJB equation for system (27) with the given cost can

be explicitly determined, namely Vo(x1, x2) =
1
2 (x

2
1 + x2

2),
and the resulting optimal control is uo = −x1x2. Since the

linearization of the nonlinear system around the origin is

given by ẋ = Ax, i.e. it is not affected by u, with

A =

(

0 1
−1 − 1

2

)

,

which is Hurwitz, then the solution of the algebraic Riccati

equation (10) corresponding to the linearized problem yields

the matrix P̄ = I . The selection

Σ(x) = ǫ

(

1
2x

2
2 0

0 1
2x

2
1

)

with ǫ > 0, is such that P (x) ∈ R
1×2 defined as

P (x) = [x1(1− ǫx1x2) , x2]

is an algebraic P̄ solution of the Hamilton-Jacobi-Bellman

equation. Note that for this solution the condition (12)

is not satisfied, hence P (x) is not an exact differential.

However, Theorem 1 guarantees the existence of a compact

set Ω ⊂ R
2n, and a matrix R such that the function V (x, ξ)

is positive definite for all (x, ξ) ∈ Ω. Let R = diag(α, α)
with α > 1, then the function V (x, ξ) is locally positive

definite in the set Ω1 = { (x, ξ) ∈ R
4 : |ξ1| ≤ 1}

and moreover the condition (17) is strictly satisfied for all

(x, ξ) ∈ Ω \ {0}, where Ω = Ω1 ∩ Ω2 = {(x, ξ) ∈
R

4 : X (x, ξ) > 0}, X being a known continuous function,

hence it is possible to determine a value k̄ ≥ 0 such that

the extended Hamilton-Jacobi-Bellman equation holds. Since

R − Φ(x, ξ) is not zero in Im(g(x)) then the dynamic

control law u(x, ξ) = −αx1x2 + (α − 1)x1ξ2 solves the

dynamic optimal control problem with L(x, ξ, u) = x2
2 +

u2+h(x, ξ), where h(x, ξ) ≥ 0 is defined as in Theorem 1.

(see also Figure 1, where the functions Lo(x) = x2
2 and

Ld(x) = x2
2 + h(x, ξx̄(0)) are displayed, bottom and top

surface respectively)

−0.5

0

0.5

−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

x
1x

2

L
Fig. 1. Instantaneous cost imposed on the state of the original problem,
i.e L(x) = x2

2 (bottom surface) and of the modified problem, namely

L(x) = x2
2 + h(x, ξx̄(0)) (top surface), respectively.

In the first simulation we let k = 2 and α = 1.4
and we have compared the static optimal feedback, the

dynamic optimal control law (20) and the optimal solution

of the linearized problem, namely ul(t) ≡ 0. The top graph

of Figure 2 shows the time histories of the state of the

system (27) when the optimal static feedback (solid line) and

the dynamic control law u(x, ξ) (dashed line) are applied,

respectively. The behavior of the state of the system driven by

the dynamic control law is closer to the optimal behavior than

the one obtained with the optimal solution of the linearized

problem (dash-dotted line). In the middle graph of Figure 2

the time histories of the optimal cost (solid line) and the cost

yielded by the dynamic solution (dashed line) are displayed,

together with the cost resulting when the zero input is applied

(dash-dotted line). (Note that this is the optimal control for

the linearized problem.) The bottom graph of Figure 2 shows

the time histories of the optimal static feedback (solid line)

and the dynamic control law (20) (dashed line), respectively.

It is worth noting that even if the relative error between

the optimal cost and the dynamic cost is around 0.18 the

actual solution of Problem 1, i.e. the time evolution of the

minimizing control law and the state of the system, is close

to the optimal solution.

In the second simulation a comparison between the opti-

mal values obtained applying the optimal static feedback and

the dynamic control law is performed for different values of

the initial condition of system (27). The values of Vo(x(0))
(bottom surface) and of V (x(0), ξ(0)) for ξ(0) = 0 (top

surface) or ξ(0) = ξx̄(0)(0) for each x̄(0) (middle surface)

are depicted as functions of x(0). Note that ξx̄(0)(0) can be

determined analytically. Finally, Figure 4 shows the relative
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Fig. 2. Top graph: time histories of the state of the state of the system
(27) driven by the optimal static feedback (solid lines) and by the dynamic
control law u(x, ξ) (dashed lines). Middle graph: time histories of the
optimal cost functional (solid line), the dynamic cost functional (dashed
line) and the cost functional for the optimal solution of the linearized system
(dash-dotted line), respectively. Bottom graph: time histories of the static
optimal feedback (solid line) and the dynamic control law (dashed line),
respectively.

error between the optimal cost, Vo(x(0)), and the dynamic

optimal cost, V (x(0), ξx̄(0)(0)). Note that the relative error

ranges between 0.1 and 0.25.

VI. CONCLUSIONS

In this paper we have studied the optimal control problem

for nonlinear systems. We have shown that the explicit

solution of the HJB equation is not needed provided an

additional cost is paid. The methodology yields a dynamic

control law that stabilizes the equilibrium of the closed-loop

system and minimizes a meaningful cost functional. The

latter is given by the sum of the original cost and an extra-

cost, that can be minimized with a proper selection of the

initial condition of the dynamic controller.
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